
 

Interpreting Execution Plans 
 

Christian Antognini 

Trivadis AG, Zürich (CH) 

17 October 2009 

 

 

 

 

 

 

Abstract 

 

An execution plan describes the operations carried out by the SQL engine to execute a SQL 
statement. Every time you have to analyze a performance problem related to a SQL 
statement, or simply question the decisions taken by the query optimizer, you must know the 
execution plan. Whenever you deal with an execution plan, you carry out three basic 
actions: you obtain it, you interpret it, and you judge its efficiency. The aim of this 
presentation is to describe how the second action is carried out. Chapter 6 of my book, 
Troubleshooting Oracle Performance, covers all of them in detail. 

 

 

Table of Contents 

 

1 Parent-Child Relationship ............................................................................................. 4 

2 Types of Operations ..................................................................................................... 6 

3 Stand-Alone Operations ............................................................................................... 7 

3.1 Stand-Alone Operations – COUNT STOPKEY ........................................................ 9 

3.2 Stand-Alone Operations – FILTER ........................................................................ 10 

4 Unrelated-Combine Operations.................................................................................. 11 

5 Related-Combine Operations ..................................................................................... 13 

5.1 Related-Combine Operations – NESTED LOOPS ................................................. 14 

5.2 Related-Combine Operations – FILTER ................................................................ 15 

5.3 Related-Combine Operations – UPDATE ............................................................. 16 

5.4 Related-Combine Operations – CONNECT BY .................................................... 17 

6 Divide and Conquer .................................................................................................. 19 

7 Core Messages ........................................................................................................... 23 

 



   

Interpreting Execution Plans  2 

 

 

 

Since 1995, Christian Antognini has been focusing on understanding how the Oracle 
database engine works. His main interests range from logical and physical database design, 
the integration of databases with Java applications, to the query optimizer and basically 
everything else related to performance management and tuning. He is currently working as a 
principal consultant and trainer at Trivadis AG (http://www.trivadis.com) in Zürich, 
Switzerland. If he is not helping one of his customers to get the most out of Oracle, he is 
somewhere lecturing on optimization or new Oracle database features for developers. He is 
member of the Trivadis Performance Team and of the OakTable Network. 

© 2009Troubleshooting Oracle Performance - Execution Plans 2

Who Am I

 Principal consultant, trainer and partner at Trivadis in Zurich (CH)

 Email: christian.antognini@trivadis.com

 Blog: antognini.ch/blog

 Focus: get the most out of Oracle

 Logical and physical database design

 Query optimizer 

 Application performance management and tuning

 Integration of databases with Java applications

 Proud member of

 Trivadis Performance Team

 OakTable Network

 



   

Interpreting Execution Plans  3 

 

 

 

Troubleshooting Oracle Performance 

by Christian Antognini 

 

Hardcover: 616 pages 

Publisher: Apress  

Publishing date: June 2008 

Language: English 

ISBN-10: 1-59059-917-9 

ISBN-13: 978-1-59059-917-4 

ISBN-13 (electronic): 978-1-4302-0498-5  

 

© 2009Troubleshooting Oracle Performance - Execution Plans 3

Troubleshooting Oracle Performance, Apress 2008

 Foundations

1. Performance Problems

2. Key Concepts

 Identification

3. Identifying Performance Problem

 Query Optimizer 

4. System and Object Statistics

5. Configuring the Query Optimizer

6. Execution Plans

7. SQL Tuning Techniques

 Tuning

8. Parsing

9. Optimizing Data Access

10. Optimizing Joins 

11. Beyond Access and Joins 

Optimization 

12. Optimizing the Physical Design

http://top.antognini.ch

 



   

Interpreting Execution Plans  4 

1 Parent-Child Relationship 

 

 

© 2009Troubleshooting Oracle Performance - Execution Plans 5

Parent-child relationship 

 An execution plan is a tree.

 Each node in the tree is an operation.

 Between operations (nodes) there is a parent-child relationship.

 The rules governing the parent-child relationship are the 

following:

 A parent has one or multiple children.

 A child has a single parent. 

 The only operation without a parent is the root of the tree.

 When an execution plan is displayed, the children are indented right, 

with respect to their parent.

 A parent is placed before its children (ID of the parent < ID of the 

children).

 



   

Interpreting Execution Plans  5 

 

 

 

Using the rules described in the previous slide, you can conclude the following. 
•  Operation 1 is the root of the tree. It has three children: 2, 5, and 8. 
•  Operation 2 has two children: 3 and 4. 
•  Operations 3 and 4 have no children. 
•  Operation 5 has one child: 6. 
•  Operation 6 has one child: 7. 
•  Operation 7 has no children. 
•  Operation 8 has one child: 9. 
•  Operation 9 has no children. 

© 2009Troubleshooting Oracle Performance - Execution Plans 6

Parent-child relationship – Example

-------------------------------------

| Id | Operation                    |

-------------------------------------

|  1 | UPDATE                       |

|  2 |  NESTED LOOPS                |

|* 3 |   TABLE ACCESS FULL          |

|* 4 |   INDEX UNIQUE SCAN          |

|  5 |  SORT AGGREGATE              |

|  6 |   TABLE ACCESS BY INDEX ROWID|

|* 7 |    INDEX RANGE SCAN          |

|  8 |  TABLE ACCESS BY INDEX ROWID |

|* 9 |   INDEX UNIQUE SCAN          |

-------------------------------------

1 5

3

4

6

2

8

7

9

 



   

Interpreting Execution Plans  6 

2 Types of Operations 

 

Caution: I coined the terms used here for the three types of operations while writing a 
presentation about the query optimizer a few years ago. Don’t expect to find these terms 
used elsewhere. 

© 2009Troubleshooting Oracle Performance - Execution Plans 7

Types of operations

 The number of possible operations is high (about 200).

 To fully understand an execution plan, you should know what 

each operation it is made of does.

 For our purpose of walking through an execution plan, you need 

to consider only three major types of operations:

 Standalone operations

 Unrelated-combine operations

 Related-combine operations

 



   

Interpreting Execution Plans  7 

3 Stand-Alone Operations 

 

 

© 2009Troubleshooting Oracle Performance - Execution Plans 8

Stand-alone operations 

 All operations having at most one child are stand-alone 

operations.

 Most operations are of this type.

 The rules governing the working of these operations are the 

following:

 Children are executed before their parents. Two optimization 

techniques presented later however, lead to exceptions to this rule.

 Every child is executed at most once.

 Every child feeds its parent.

 



   

Interpreting Execution Plans  8 

 

 

 

This execution plan consists only of stand-alone operations. By applying the rules described 
earlier, you find out that the execution plan carries out the operations as follows: 
1. Operations 1 and 2 have a single child each (2 and 3, respectively); they cannot be the 

first operations being executed. Therefore, the execution starts with operation 3. 
2. Operation 3 scans the index emp_job_i by applying the access predicate 

"JOB"='CLERK‘. In doing so, it extracts four rowids (this information is given in the 
column A-Rows) from the index and passes them to its parent operation (2). 

3. Operation 2 accesses the table emp through the four rowids passed from operation 3. For 
each rowid, a row is read. Then, it applies the filter predicate "SAL"<1200. This filter 
leads to the exclusion of one row. The data of the remaining three rows are passed to its 
parent operation (1). 

4. Operation 1 performs a GROUP BY on the rows passed from operation 2. The resulting 
set is reduced to two rows. Since this is the last operation, the data is sent to the caller.  

© 2009Troubleshooting Oracle Performance - Execution Plans 9

Stand-alone operations – Example

SELECT deptno, count(*) 

FROM emp 

WHERE job = 'CLERK' AND sal < 1200 

GROUP BY deptno

------------------------------------------------------------------

| Id | Operation                   | Name      | Starts | A-Rows |

------------------------------------------------------------------

|  1 | HASH GROUP BY               |           |      1 |      2 |

|* 2 |  TABLE ACCESS BY INDEX ROWID| EMP       |      1 |      3 |

|* 3 |   INDEX RANGE SCAN          | EMP_JOB_I |      1 |      4 |

------------------------------------------------------------------

2 - filter("SAL"<1200)

3 - access("JOB"='CLERK')

1 2 3

 



   

Interpreting Execution Plans  9 

3.1 Stand-Alone Operations – COUNT STOPKEY 

 

 

The important thing to notice in this execution plan is that the number of rows returned by 
operation 2 is limited to ten. This is true even if operation 2 is a full table scan of a table 
containing more than ten rows (actually the table contains 14 rows). What happens is that 
operation 1 stops the processing of operation 2 as soon as the necessary number of rows has 
been processed. Be careful, though, because blocking operations (e.g. ORDER BY) cannot be 
stopped. In fact, they need to be fully processed before returning rows to their parent 
operation. 

© 2009Troubleshooting Oracle Performance - Execution Plans 10

Stand-alone operations – COUNT STOPKEY

 The operation COUNT STOPKEY is commonly used to execute 

the top-n queries.

 Its aim is to stop the processing as soon as the required number 

of rows has been returned to the caller. 

SELECT * 

FROM emp 

WHERE rownum <= 10

---------------------------------------------------

| Id | Operation         | Name | Starts | A-Rows |

---------------------------------------------------

|* 1 | COUNT STOPKEY     |      |      1 |     10 |

|  2 |  TABLE ACCESS FULL| EMP  |      1 |     10 |

---------------------------------------------------

1 - filter(ROWNUM<=10)

 



   

Interpreting Execution Plans  10 

3.2 Stand-Alone Operations – FILTER 

 

 

According to the rules described earlier, such an execution plan should be carried out by 
starting the processing of operation 3. In reality, looking at the column Starts tells you that 
only operation 1 is executed. This optimization simply avoids processing operations 2 and 3 
because the data has no chance of going through the filter applied by operation 1 anyway. 

© 2009Troubleshooting Oracle Performance - Execution Plans 11

Stand-alone operations – FILTER

 The operation FILTER applies a filter when its child passes data 

to it. In addition, it could decide to completely avoid the execution 

of a child and all the dependent operations as well.

SELECT * 

FROM emp 

WHERE job = 'CLERK' AND 1 = 2

------------------------------------------------------------------

| Id | Operation                   | Name      | Starts | A-Rows |

------------------------------------------------------------------

|* 1 | FILTER                      |           |      1 |      0 |

|  2 |  TABLE ACCESS BY INDEX ROWID| EMP       |      0 |      0 |

|* 3 |   INDEX RANGE SCAN          | EMP_JOB_I |      0 |      0 |

------------------------------------------------------------------

1 - filter(NULL IS NOT NULL)

3 - access("JOB"='CLERK')

 



   

Interpreting Execution Plans  11 

4 Unrelated-Combine Operations 

 

 

© 2009Troubleshooting Oracle Performance - Execution Plans 12

Unrelated-combine operations 

 All operations having multiple children that are independently 

executed are unrelated-combine operations.

 The following operations are of this type: AND-EQUAL, BITMAP 

AND, BITMAP OR, BITMAP MINUS, CONCATENATION, 

CONNECT BY WITHOUT FILTERING, HASH JOIN, 

INTERSECTION, MERGE JOIN, MINUS, MULTI-TABLE 

INSERT, SQL MODEL, TEMP TABLE TRANSFORMATION and 

UNION-ALL

 The characteristics of these operations are the following:

 Children are executed before their parents.

 Children are executed sequentially.

 Every child is executed at most once and independently the others.

 Every child feeds its parent.

 



   

Interpreting Execution Plans  12 

 

 

 

In this execution plan, the unrelated-combine operation is the UNION-ALL. The other three 
are stand-alone operations. By applying the rules described earlier, you see that the 
execution plan carries out the operations as follows: 
1. Operation 1 has three children, and, among them, operation 2 is the first in ascending 

order. Therefore, the execution starts with operation 2. 
2. Operation 2 scans the table emp and returns 14 rows to its parent operation (1). 
3. When operation 2 is completely executed, operation 3 is started. 
4. Operation 3 scans the table dept and returns four rows to its parent operation (1). 
5. When operation 3 is completely executed, operation 4 is started. 
6. Operation 4 scans the table dual and returns one row to its parent operation (1). 
7. Operation 1 builds a single result set of 19 rows based on all data received from its 

children and sends the data to the caller. 

Notice how the column Starts clearly shows that each operation is executed only once. 

© 2009Troubleshooting Oracle Performance - Execution Plans 13

Unrelated-combine operations – Example

SELECT ename FROM emp 

UNION ALL 

SELECT dname FROM dept 

UNION ALL 

SELECT '%' FROM dual

-----------------------------------------------------

| Id  | Operation          | Name | Starts | A-Rows |

-----------------------------------------------------

|   1 |  UNION-ALL         |      |      1 |     19 |

|   2 |   TABLE ACCESS FULL| EMP  |      1 |     14 |

|   3 |   TABLE ACCESS FULL| DEPT |      1 |      4 |

|   4 |   FAST DUAL        |      |      1 |      1 |

-----------------------------------------------------

1 3

2

4

 



   

Interpreting Execution Plans  13 

5 Related-Combine Operations 

 

 

© 2009Troubleshooting Oracle Performance - Execution Plans 14

Related-combine operations

 All operations having multiple children where one of the children controls 

the execution of all other children are related-combine operations.

 The following operations are of this type: NESTED LOOPS, UPDATE, 

FILTER, CONNECT BY WITH FILTERING and BITMAP KEY 

ITERATION.

 The following are the characteristics of these operations:

 Children are executed before their parents.

 The child with the smallest id controls the execution of the other children.

 Children are not executed sequentially. Instead, a kind of interleaving is 

performed.

 Only the first child is executed at most once. All other children may be 

executed several times or not executed at all.

 Not every child feeds its parent. 

 



   

Interpreting Execution Plans  14 

5.1 Related-Combine Operations – NESTED LOOPS 

 

 

The execution plan carries out the operations as follows: 
1. Operation 1 has two children (2 and 3), and among them, operation 2 is the first in 

ascending order. Therefore, the execution starts with operation 2. 
2. Operation 2 scans the table emp, applies the filter predicate "EMP"."COMM" IS NULL, 

and returns the data of ten rows to its parent operation (1). 
3. For each row returned by operation 2, the second child of the operation NESTED LOOPS 

is executed once. This is confirmed by comparing the column A-Rows of operation 2 
with the column Starts of operations 3 and 4. 

4. Based on the rules that apply to stand-alone operations, operation 4 is executed before 
operation 3. 

5. Operation 4 scans the index dept_pk by applying the access predicate 
"EMP"."DEPTNO―= "DEPT"."DEPTNO". In doing so, it extracts ten rowids from the 
index over the ten executions and passes them to its parent operation (3). 

6. Operation 3 accesses the table dept through the ten rowids passed from operation 4. For 
each rowid, a row is read. Then it applies the filter predicate 
"DEPT"."DNAME"<>'SALES'. This filter leads to the exclusion of two rows. It passes the 
data of the remaining eight rows to its parent operation (1). 

7. Operation 1 sends the data of eight rows to the caller.  

© 2009Troubleshooting Oracle Performance - Execution Plans 15

Related-combine operations – NESTED LOOPS

SELECT * 

FROM emp, dept 

WHERE emp.deptno = dept.deptno 

AND emp.comm IS NULL

AND dept.dname != 'SALES'

----------------------------------------------------------------

| Id | Operation                   | Name    | Starts | A-Rows |

----------------------------------------------------------------

|  1 | NESTED LOOPS                |         |      1 |      8 |

|* 2 |  TABLE ACCESS FULL          | EMP     |      1 |     10 |

|* 3 |  TABLE ACCESS BY INDEX ROWID| DEPT    |     10 |      8 |

|* 4 |   INDEX UNIQUE SCAN         | DEPT_PK |     10 |     10 |

----------------------------------------------------------------

2 - filter("EMP"."COMM" IS NULL)

3 - filter("DEPT"."DNAME"<>'SALES')

4 – access("EMP"."DEPTNO"="DEPT"."DEPTNO") 1

3

2

4

 



   

Interpreting Execution Plans  15 

5.2 Related-Combine Operations – FILTER 

 

 

The execution plan carries out the operations in the following manner: 
1. Operation 1 has three children (2, 3 and 5), and operation 2 is the first of them in 

ascending order. Therefore, the execution starts with operation 2. 
2. Operation 2 scans the table emp and returns 14 rows to its parent operation (1). 
3. For each row returned by operation 2, the second and third children of the operation 

FILTER should be executed once. In reality, a kind of caching is implemented to reduce 
executions to a minimum. Operation 3 is executed three times, once for each distinct 
value in the column deptno in the table emp. Operation 5 is executed eight times, once 
for each distinct value in the column empno in the table emp after applying the filter 
imposed by the operation  

4. According to the rules for stand-alone operations, operation 4, which is executed before 
operation 3, scans the index dept_pk by applying the access predicate 
"DEPT"."DEPTNO"=:B1. 

5. Operation 3 accesses the table dept through the rowids passed from its child operation 
(4) and applies the filter predicate "DEPT"."DNAME"='SALES'. 

6. Operation 5 scans the table bonus and applies the filter predicate 
"BONUS"."ENAME"=:B1. 

7. Operation 1, after applying the filter predicate implemented with operations 3 and 5, 
sends the data of eight rows to the caller.  

© 2009Troubleshooting Oracle Performance - Execution Plans 16

Related-combine operations – FILTER

SELECT *

FROM emp

WHERE NOT EXISTS (SELECT 0 FROM dept WHERE dept.dname = 'SALES' 

AND dept.deptno = emp.deptno)

AND NOT EXISTS (SELECT 0 FROM bonus WHERE bonus.ename = emp.ename);

----------------------------------------------------------------

| Id | Operation                   | Name    | Starts | A-Rows |

----------------------------------------------------------------

|* 1 | FILTER                      |         |      1 |      8 |

|  2 |  TABLE ACCESS FULL          | EMP     |      1 |     14 |

|* 3 |  TABLE ACCESS BY INDEX ROWID| DEPT    |      3 |      1 |

|* 4 |   INDEX UNIQUE SCAN         | DEPT_PK |      3 |      3 |

|* 5 |  TABLE ACCESS FULL          | BONUS   |      8 |      0 |

----------------------------------------------------------------

1 - filter( NOT EXISTS (SELECT 0 FROM "DEPT" "DEPT" WHERE

"DEPT"."DEPTNO"=:B1 AND "DEPT"."DNAME"='SALES') 

AND NOT EXISTS (SELECT 0 FROM "BONUS„

"BONUS" WHERE "BONUS"."ENAME"=:B2))

3 - filter("DEPT"."DNAME"='SALES')

4 - access("DEPT"."DEPTNO"=:B1)

5 – filter("BONUS"."ENAME"=:B1)

1 3

2

5

4

 



   

Interpreting Execution Plans  16 

5.3 Related-Combine Operations – UPDATE 

 

 

The execution plan carries out the operations as follows: 
1. Operation 1 has three children (2, 3, and 5), and operation 2 is the first of the three in 

ascending order. Therefore, the execution starts with operation 2. 
2. Operation 2 scans the table emp and returns 14 rows to its parent operation (1). 
3. The second and third child (3 and 5) might be executed several times (at most, as many 

times as the number of rows returned by operation 2). Since both these operations are 
stand-alone, and each has a child, their execution starts with the child operations (4 and 
6). 

4. For each distinct value in the column deptno returned by operation 2, operation 4 scans 
the table emp and applies the filter predicate "E2"."DEPTNO"=:B1. In doing so over the 
three executions, it extracts 14 rows and passes them to its parent operation (3). 

5. Operation 3 computes the average salary of the rows passed to it from operation 4 and 
returns the result to its parent operation (1). 

6. Operation 6 scans the table emp, extracts 14 rows, and passes them to its parent 
operation (5). Note that this subquery is executed only once because it is not correlated 
to the main query. 

7. Operation 5 computes the average commission of the rows passed to it from operation 6 
and returns the result to its parent operation (1). 

8. Operation 1 updates each row passed by operation 2 with the value returned by its other 
children (3 and 5). Note that even if the UPDATE statement modifies the 14 rows, 
column A-Rows shows 0 for this operation.  

© 2009Troubleshooting Oracle Performance - Execution Plans 17

Related-combine operations – UPDATE

UPDATE emp e1 

SET sal = (SELECT avg(sal) FROM emp e2 WHERE e2.deptno = e1.deptno),     

comm = (SELECT avg(comm) FROM emp e3)

------------------------------------------------------

| Id  | Operation           | Name | Starts | A-Rows |

------------------------------------------------------

|   1 |  UPDATE             | EMP  |      1 |      0 |

|   2 |   TABLE ACCESS FULL | EMP  |      1 |     14 |

|   3 |   SORT AGGREGATE    |      |      3 |      3 |

|*  4 |    TABLE ACCESS FULL| EMP  |      3 |     14 |

|   5 |   SORT AGGREGATE    |      |      1 |      1 |

|   6 |    TABLE ACCESS FULL| EMP  |      1 |     14 |

------------------------------------------------------

4 - filter("E2"."DEPTNO"=:B1)
1 3

2

5

4

6

 



   

Interpreting Execution Plans  17 

5.4 Related-Combine Operations – CONNECT BY 

 

 

The execution plan carries out the operations as follows: 
1. Operation 1 has two children (2 and 3), and operation 2 is the first of them in ascending 

order. Therefore, the execution starts with operation 2. 
2. Operation 2 scans the table emp, applies the filter predicate "MGR" IS NULL, and returns 

the root of the hierarchy to its parent operation (1). 
3. Operation 3 is the second child of operation 1. It is therefore executed for each level of 

the hierarchy—in this case, four times. Naturally, the rules previously discussed for the 
operation NESTED LOOPS apply for operation 3. The first child, operation 4, is executed, 
and for each row it returns, the inner loop (composed of operation 5 and its child 
operation 6) is executed once. 

4. For the first execution, operation 4 gets the root of the hierarchy through the operation 
CONNECT BY PUMP. In this case, there is a single row (KING) at level 1. With the value 
in the column mgr, operation 6 does a scan of the index emp_mgr_i by applying the 
access predicate "MGR"=PRIOR "EMPNO", extracts the rowids, and returns them to its 
parent operation (5). Operation 5 accesses the table emp with the rowids and returns the 
rows to its parent operation (3). 

5. For the second execution of operation 4, everything works the same as for the first 
execution. The only difference is that the data from level 2 (JONES, BLAKE, and CLARK) 
is passed to operation 4 for the processing. 

6. For the third execution of operation 4, everything works like in the first one. The only 
difference is that level 3 data (SCOTT, FORD, ALLEN, WARD, MARTIN, TURNER, 
JAMES, and MILLER) is passed to operation 4 for the processing. 

© 2009Troubleshooting Oracle Performance - Execution Plans 18

Related-combine operations – CONNECT BY

SELECT level, ename, prior ename AS manager 

FROM emp 

START WITH mgr IS NULL 

CONNECT BY PRIOR empno = mgr

-------------------------------------------------------------------

| Id | Operation                    | Name      | Starts | A-Rows |

-------------------------------------------------------------------

|* 1 | CONNECT BY WITH FILTERING    |           |      1 |     14 |

|* 2 |  TABLE ACCESS FULL           | EMP       |      1 |      1 |

|  3 |  NESTED LOOPS                |           |      4 |     13 |

|  4 |   CONNECT BY PUMP            |           |      4 |     14 |

|  5 |   TABLE ACCESS BY INDEX ROWID| EMP       |     14 |     13 |

|* 6 |    INDEX RANGE SCAN          | EMP_MGR_I |     14 |     13 |

-------------------------------------------------------------------

1 - access("MGR"=PRIOR "EMPNO")

2 - filter("MGR" IS NULL)

6 - access("MGR"=PRIOR "EMPNO")

5 6

1

3

2

4

 



   

Interpreting Execution Plans  18 

7. For the fourth and last execution of operation 4, everything works like in the first one. 
The only difference is that level 4 data (ADAMS and SMITH) is passed to operation 4 for 
the processing. 

8. Operation 3 gets the rows passed from its children and returns them to its parent 
operation (1). 

9. Operation 1 applies the access predicate "MGR"=PRIOR "EMPNO" and sends the 14 
rows to the caller.  



   

Interpreting Execution Plans  19 

6 Divide and Conquer 

 

 

© 2009Troubleshooting Oracle Performance - Execution Plans 19

Divide and conquer (1)

 Reading long execution plans is no different from reading short 

ones.

 All you need is to methodically apply the rules provided in the 

previous slides.

 With them, it does not matter how many lines an execution plan 

has. You simply proceed in the same way. 

 



   

Interpreting Execution Plans  20 

 

 

 

To find out in what order the blocks are executed, you have to apply the rules discussed 
previously discussed: 
1. Operation 1 is a stand-alone operation, and its child (2) is executed before it. 
2. Operation 2 is a stand-alone operation, and its child (3) is executed before it. 
3. Operation 3 is a related-combine operation, and its children are executed before it. Since 

the first child block (G) is executed before the second child block (J), let’s continue with 
the first operation (4) of the first child block (G). 

4. Operation 4 is an unrelated-combine operation, and its children are executed before it. 
Since the first child block (E) is executed before the second child block (F), let’s continue 
with the first operation (5) of the first child block (E). 

5. Operation 5 is a related-combine operation, and its children are executed before it. Since 
the first child block (C) is executed before the second child block (D), let’s continue with 
the first operation (6) of the first child block (C). 

6. Operation 6 is a related-combine operation, and its children are executed before it. Since 
the first child block (A) is executed before the second child block (B), let’s continue with 
the first operation (7) of the first child block (A). 

7. Operation 7 is a stand-alone operation and has no children. This means that you have 
finally found the first operation to be executed (hence it’s in block A). The operation 
scans a table and returns the rows to its parent operation (6). 

8. Block B is executed for each row returned by block A. In this block, operation 9 scans an 
index at first, and operation 8 accesses a table with the returned rowids and finally 
returns the rows to its parent operation (6). 

© 2009Troubleshooting Oracle Performance - Execution Plans 20

Divide and conquer (2)

 To read an execution plan it is 

necessary to both decompose the 

execution plan into basic blocks 

and recognize the order of 

execution.

 Each combine operations (both 

related and unrelated) must be 

identified.

 3, 4, 5, 6, and 14

 For each child operation of each 

combine operation, a block is 

defined.

0 SELECT STATEMENT

1  FILTER

2   SORT GROUP BY

3    FILTER

4     HASH JOIN OUTER

5      NESTED LOOPS OUTER

6       NESTED LOOPS

7        TABLE ACCESS FULL

8        TABLE ACCESS BY INDEX ROWID

9         INDEX UNIQUE SCAN

10       TABLE ACCESS BY INDEX ROWID

11        INDEX UNIQUE SCAN

12      TABLE ACCESS FULL

13     SORT UNIQUE

14      UNION-ALL

15       TABLE ACCESS FULL

16       TABLE ACCESS FULL

A

B

C

D

E

F

G

H

I

J

 



   

Interpreting Execution Plans  21 

9. Operation 6 performs the join between the rows returned by blocks A and B and then 
returns the result to its parent operation (5). 

10. Block D is executed for each row returned by block C. In other words, it is executed for 
each row returned by operation 6 to its parent operation (5). In this block, operation 11 
scans an index initially. Then, operation 10 accesses a table with the returned rowids and 
returns the rows to its parent operation (5). 

11. Operation 5 performs the join between the rows returned by the blocks C and D and 
then returns the result to its parent operation (4). 

12. Operation 12 (block F) is executed only once. It scans a table and returns the result to its 
parent operation (4). 

13. Operation 4 performs the join between the rows returned by the blocks E and F and then 
returns the result to its parent operation (3). 

14. Block J is basically executed for each row returned by block G. In other words, it is 
executed for each row returned by operation 4 to its parent operation (3). In this block, 
operation 15 scans a table at first and returns the rows to its parent operation (14). Then, 
operation 16 scans a table and returns the rows to its parent operation (14). After that, 
operation 14 puts the rows returned by its children together and returns the result to its 
parent operation (13). Finally, operation 13 removes some duplicate rows. 

15. Once operation 3 has applied the filter with the block J, it returns the result to its parent 
operation (2). 

16. Operation 2 performs a GROUP BY and returns the result to its parent operation (1). 
17. Operation 1 applies a filter and returns the result to the caller. 



   

Interpreting Execution Plans  22 

 

 

 

© 2009Troubleshooting Oracle Performance - Execution Plans 21

Divide and conquer (3)

2 3

4

15

16

5

14

12

13

1

7

8

6

10 11

9

 



   

Interpreting Execution Plans  23 

7 Core Messages 

 

 

© 2009Troubleshooting Oracle Performance - Execution Plans 22

Core messages

Knowledge 

transfer is only 

the beginning. 

Knowledge 

application is 

what counts.

 Simple rules can be applied for 

interpreting execution plans.

 


